Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Copper(II) succinate complexes with 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane

M. J. González Garmendia, ${ }^{\text {a }}$ V. San Nacianceno, ${ }^{\text {a }}$ J. M. Seco ${ }^{\text {a }}$ and F. J. Zúñiga ${ }^{\text {b }}$ *

${ }^{\text {a G Grupo de Química Inorgánica, Facultad de Ciencias Químicas, Universidad del País }}$ Vasco UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain, and ${ }^{\text {b }}$ Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 664, 48080 Bilbao, Spain
Correspondence e-mail: javier.zuniga@ehu.es

Received 22 July 2009
Accepted 5 October 2009
Online 17 October 2009
The compounds poly[di- μ_{4}-succinato- μ_{2}-1,2-di-4-pyridyleth-ane-dicopper(II)], $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]_{n}$, (I), and poly-[di- μ_{4}-succinato- μ_{2}-1,3-di-4-pyridylpropane-dicopper(II)], $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right]_{n}$, (II), exhibit polymeric structures with the dicopper units doubly bridged by bis-bidentate succinate groups and crosslinked by the separator bis(pyridyl) molecules. In (I), the molecule exhibits a centre of inversion located midway between the core Cu -dimer atoms and another that relates half of the bis(pyridyl)ethane ligand to the other half. Compound (II) has a similar molecular packing but with a doubled lattice constant and noncentrosymmetric core units. An antiferromagnetic interaction due to the dinuclear copper units was deduced from magnetic subsceptibility measurements, and spin triplet signals were detected in the electron paramagnetic resonance spectra for both compounds.

Comment

Metal-organic coordination polymers are of great current interest and spacer ligands are frequently used to form new extended framework structures. Dimetal units can be combined with bidentate organic ligands, such as 1,2-di-4pyridylethane and 1,3-di-4-pyridylpropane, as flexible organic spacers to give rise to a large variety of structures (Batsanov et al., 1996; Suen et al., 2006; Carballo et al., 2007). The resultant structures combining dimetal $\mathrm{Cu}_{2}(\mathrm{OAc})_{4}$ units with two different N, N^{\prime}-bidentate ligands, viz. 1,2-di-4-pyridylethane and 1,4-di-4-pyridylbuta-1,3-diyne, have been reported as one-dimensional polymeric chains containing a bridging nitrogenated ligand and dimeric $\mathrm{Cu}_{2}(\mathrm{OAc})_{4}$ units (Goforth et al., 2005). Besides the observed polymorphism due to the crystallization conditions, $\pi-\pi$ interactions between the pyridyl rings play an important role in the resultant packing of the polymeric chains (Hu et al., 2005).

During investigations of the magnetic properties of compounds based on copper(II) succinate complexes, two new compounds, (I) and (II), were synthesized with 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as bidentate ligands. Our goal was centred on the structural frameworks resulting from the interaction of the succinate chains with N, N^{\prime}-bidentate spacer ligands. The structure of the binuclear unit was reported by O'Connor \& Maslen (1966) for copper(II) succinate dihydrate, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. In that structure, ribbon-like chains of paddle-wheel dicopper units are doubly bridged through bis-bidentate succinate groups. Each succinate anion links two dimeric units in the chain and two linking succinate anions are located between each pair of dimeric copper groups. A water molecule is coordinated to each Cu atom in the apical position.

The structures of both (I) and (II) are monoclinic $P 2_{1} / c$ and can be described as ribbon-like chains of paddle-wheel dicopper units doubly bridged through bis-bidentate succinate groups in gauche conformations, with torsion angle $\mathrm{C} 7-\mathrm{C} 8-$ $\mathrm{C} 9-\mathrm{C} 10=67.6(2)^{\circ}$ in (I), and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=70.6$ (6) ${ }^{\circ}$ and $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8=-62.47$ (1) ${ }^{\circ}$ in (II), similar to those found for $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (O'Connor \& Maslen, 1966). The molecular conformations are shown in Fig. 1 and the molecular packing, viewed along the [010] direction, is shown for both compounds in Fig. 2. The dimeric copper(II) units are coordinated through the two N atoms of the bridging ligands in infinite chains. The $-\mathrm{Cu}-\mathrm{Cu}-\mathrm{py}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{py}-\mathrm{Cu}-\mathrm{Cu}-$ chains run along the [101] direction in (I) and along the [201] direction in (II). Parallel chains related by a unit-cell translation along [010] are linked by succinate groups and form two-dimensional sheets (Fig. 2c). In compound (I), the planes of the two pyridyl rings in the 1,2-di-4-pyridylethane ligand are parallel because the ligand sits across a centre of inversion. The pyridyl rings of chains of parallel sheets are symmetry related by the twofold screw axis, and those at (x, y, z) and ($1-x,-\frac{1}{2}+y, \frac{3}{2}-z$) form a dihedral angle of 27.7 (3) ${ }^{\circ}$ with a relative disposition far from eclipsed because of the shift

Figure 1
(a) A view of the copper coordination with a partial chain for (I) and (b) the configuration for compound (II). Atoms of the asymmetric units are labelled. For (I), the $\mathrm{Cu} \cdots \mathrm{Cu}$ vector is centred at $\left(0,1, \frac{1}{2}\right)$. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
of $\frac{b}{2}$ [the $C g \cdots C g$ distance between their centroids is 4.783 (3) A].

In compound (II), the pyridyl rings containing atoms N1 and N 2 form a dihedral angle of $12.3(3)^{\circ}$ and exhibit two different interactions with the rings of parallel symmetryrelated chains. For pairs of rings containing N 1 at (x, y, z) and $(2-x, 1-y, 1-z)$, the $C g \cdots C g$ distance is 3.761 (3) \AA (slip distance $=1.29 \AA$), whereas for the rings containing N 2 at $(x$, $y, z)$ and ($1-x, 1-y, 1-z$), these values are 3.631 (4) and $1.03 \AA$, respectively, which corresponds to a $\pi-\pi$ interaction. In this way, the chains interact through these $\pi-\pi$ stacking interactions between pyridyl ring pairs and a three-dimen-

(a)

(b)

(c)

Figure 2
Projections along [010], showing the molecular packing of (a) (I) and (b) (II). H atoms have been omitted for clarity. (c) The two-dimensional network of parallel chains linked by succinate groups in (I); the network is similar in compound (II).
sional architecture is thereby established. Other such $\pi-\pi$ interactions between pairs of aromatic rings have been described (Perlepes et al., 1992).

In both compounds, each $\mathrm{Cu}^{\mathrm{II}}$ atom exhibits the same coordination, viz. a square-pyramidal geometry. The geometry of the dinuclear unit is described in Tables 1 and 2 for compounds (I) and (II), respectively. The equatorial plane is
formed by four O atoms of four succinate groups. The apical position is occupied by an N atom of a spacer ligand. The trigonality indices (Addison et al., 1984) deduced from the angle data $[\tau=0.004$ for (I), and $0.005(\mathrm{Cu} 1)$ and $0.004(\mathrm{Cu} 2)$ for (II)] indicate a square-pyramidal geometry. The $\mathrm{Cu}^{\mathrm{II}}$ atoms are displaced from the basal plane towards the apical N atom by $0.218 \AA$ in (I), and by $0.195(\mathrm{Cu} 1)$ and $0.213 \AA(\mathrm{Cu} 2)$ in (II). This coordination geometry is similar to that found for copper(II) succinate dihydrate (O’Connor \& Maslen, 1966). The magnetic and electron paramagnetic resonance (EPR) results for $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Sharrok \& Melnik, 1985) correspond to the antiferromagnetic interaction characteristic of dimeric units with four syn-syn bridging carboxylate groups. We found similar results in compounds (I) and (II).

The magnetic and EPR results agree with those found for compounds containing a dimeric copper unit (Seco et al., 2002; Sapiña et al., 1994). A hypothetical interaction through the nitrogenated ligands is negligible, as in the case of the onedimensional chains with 1,2-di-4-pyridylethane (Carballo et al., 2007).

Experimental

A combined solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol}, 31 \mathrm{mg})$ and succinic acid ($0.125 \mathrm{mmol}, 15 \mathrm{mg}$) in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$, 1,2-di-4-pyridylethane ($0.125 \mathrm{mmol}, 23 \mathrm{mg}$) in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ and urea (0.437 mmol , 26 mg) in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ was prepared. After approximately one month, small green crystals of (I) suitable for X-ray crystallographic study were obtained. Crystals of compound (II) were obtained by the same procedure, but using 1,3-di-4-pyridylpropane.

Temperature-dependent magnetic susceptibility data were collected in the $6.5-300 \mathrm{~K}$ range using a Quantum Design PPMS 6000 magnetometer in a field strength of 5 kOe . The $\chi_{\mathrm{m}} \cdot T$ values decrease with decreasing temperature in the manner characteristic of paddlewheel dinuclear copper groups. The observed $\chi_{\mathrm{m}} \cdot T$ data were fitted to the Bleaney-Bowers equation for a dimer with $S_{1}=S_{2}=\frac{1}{2}$, modified by the inclusion of a fraction of monomeric impurity (O'Connor, 1982): $\chi_{\mathrm{m}}(2 \mathrm{Cu})=2(\{C \exp (x)(1-\rho) /[1+3 \exp (x)]\}+C \rho / 4+N \alpha)$, where $C=N g^{2} \beta^{2} / k T, x=2 J / k T, 2 J$ is the separation between singlet and triplet states [g is the gyromagnetic factor, T is the temperature, k the Boltzman constant, ρ is the fraction of monomeric impurity and $N \alpha$ is the temperature-independent paramagnetism (TIP)]. The antiferromagnetic parameters are $2 J=-366$ and $-336 \mathrm{~cm}^{-1}$ for (I) and (II), respectively. The powder EPR spectra of (I) and (II), recorded on a Bruker ESP 300 spectrometer at Q band 33.5 GHz and room temperature, show the five signals of the triplet state $(S=1)$ for $D \neq 0$ and $E \simeq 0$. The spectra were interpreted according to the Wasserman, Snyder and Yager equations (Bencini \& Gatteschi, 1990). The values $g_{\text {parallel }}=2.26 / 2.26, g_{\text {perpendicular }}=2.07 / 2.06$ and $D=$ $0.36 / 0.37 \mathrm{~cm}^{-1}$ for (I)/(II) were thereby obtained.

Compound (I)

Crystal data

```
\(\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]\)
\(M_{r}=271.7\)
Monoclinic, \(P 2_{1} / c\)
\(a=11.342\) (2) \(\AA\) 。
\(b=6.4613\) (10) \(\AA\)
\(c=15.269(4) \AA\)
\(\beta=116.55(3)^{\circ}\)
```


Data collection

Oxford Diffraction Xcalibur CCD diffractometer
Absorption correction: integration
(JANA2006; Petříček et al., 2006)
$T_{\text {min }}=0.763, T_{\text {max }}=0.960$
10503 measured reflections 2885 independent reflections 1225 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.093$

Refinement

$R[F>2 \sigma(F)]=0.058$
$w R(F)=0.068$
$S=0.99$
2885 reflections

145 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.83 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{-3}$

Compound (II)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right]$
$M_{r}=557.5$
Monoclinic, $P 2_{1} / c$
$a=15.5630(10 \mathrm{C}$ А
$b=6.4472$ (7) A
$c=24.100$ (2) \AA
$\beta=116.913$ (9) ${ }^{\circ}$

$$
\begin{aligned}
& V=2156.2(4) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.03 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& 0.29 \times 0.08 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS image-plate diffractometer
Absorption correction: Gaussian
(JANA2006; Petříček et al., 2006)
$T_{\text {min }}=0.789, T_{\text {max }}=0.960$
25854 measured reflections 5101 independent reflections 1931 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.110$

Refinement

$R[F>2 \sigma(F)]=0.056$
248 parameters
$w R(F)=0.054$
H -atom parameters constrained
$S=1.30$
5101 reflections

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{i}}$	$2.665(2)$	$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{ii}}$	$1.955(5)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.955(4)$	$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{iii}}$	$1.983(5)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.967(4)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.218(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$167.08(15)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{ii}}$	$89.86(19)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{ii}}$	$88.93(19)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{iii}}$	$88.83(19)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\text {iii }}$	$89.57(19)$	$\mathrm{O}^{\mathrm{iii}}-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{iii}}$	$167.50(15)$
Symmetry codes: (i) $-x,-y+2,-z+1 ;$ (ii) $x, y+1, z ;$ (iii) $-x,-y+1,-z+1$.			

Table 2
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$ for (II).

$\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$	$2.6336(17)$	$\mathrm{Cu} 2-\mathrm{O} 2$	$1.971(9)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.968(9)$	$\mathrm{Cu} 2-\mathrm{O} 4^{\mathrm{i}}$	$1.989(9)$
$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.967(9)$	$\mathrm{Cu} 2-\mathrm{O} 6$	$1.974(9)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.953(9)$	$\mathrm{Cu} 2-\mathrm{O} 8^{\mathrm{i}}$	$1.963(9)$
$\mathrm{Cu} 1-\mathrm{O} 7^{\mathrm{i}}$	$1.957(9)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$89.0(4)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 4^{\mathrm{i}}$	$88.5(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$89.3(4)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 6$	$89.9(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 7^{\mathrm{i}}$	$168.1(3)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 8^{\mathrm{i}}$	$167.9(3)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$169.3(3)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{O} 6$	$167.6(3)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$89.9(4)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 2-8^{\mathrm{i}}$	$90.1(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$89.6(4)$	$\mathrm{O} 6-\mathrm{Cu} 2-\mathrm{O} 8^{\mathrm{i}}$	$88.9(4)$

Symmetry code: (i) $x, y-1, z$.

The space group for both (I) and (II) is $P 2_{1} / c$, but the lattice constants cannot be compared directly. The relationship between the cell parameters is given by $a_{\mathrm{I}}=1 / 2 c_{\mathrm{II}}, b_{\mathrm{I}}=b_{\mathrm{II}}$ and $c_{\mathrm{I}}=a_{\mathrm{II}}+1 / 2 c_{\mathrm{II}}$. The diffraction pattern of (II) shows a pseudo-body-centred symmetry ($h+k+l=2 n$) which, combined with the genuine conditions for $P 2_{1} / c$, gives pseudo-conditions for $I 2 / a$ (standard $C 2 / c$). For both compounds, the H -atom coordinates were calculated with $\mathrm{C}-\mathrm{H}=$ $0.98 \AA$ and constrained, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The atomic displacement parameters of the pyridyl rings indicate some orientational disorder, with a large component of the thermal ellipsoid perpendicular to the plane of the ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007) for (I); X-AREA (Stoe \& Cie, 2006) for (II). Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for (I); X-AREA for (II). Data reduction: CrysAlis RED for (I); X-RED32 (Stoe \& Cie, 2006) for (II). For both compounds, program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: JANA2006.

Financial support for this work was received from the Diputación Foral de Gipuzkoa (Spain) and FEDER.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3201). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Batsanov, A. S., Begley, M. J., Hubberstey, P. \& Stroud, J. (1996). J. Chem. Soc. Dalton Trans. pp. 1947-1957.
Bencini, A. \& Gatteschi, D. (1990). EPR of Exchange Coupled Systems, p. 174. Berlin: Springer.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.
Carballo, R., Vovelo, B., El Fallah, M. S., Ribas, J. \& Vázquez-López, E. M. (2007). Cryst. Growth Des. 7, 1069-1077.

Goforth, A. M., Gerth, K., Smith, M. D., Shotwell, S., Bunz, U. H. F. \& Loye, H. C. (2005). Solid State Sci. 7, 1083-1095.

Hu, H.-L., Suen, M.-C., Yeh, C.-W. \& Chen, J.-D. (2005). Polyhedron, 24, 14971502.

O'Connor, C. J. (1982). Prog. Inorg. Chem. 29, 239-243.
O’Connor, B. H. \& Maslen, E. N. (1966). Acta Cryst. 20, 824-835.
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Perlepes, S. P., Huffman, J. C. \& Christou, G. (1992). Polyhedron, 11, 1471-1479.
Petříček, V., Dušek, M. \& Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
Sapiña, F., Burgos, M., Escriva, E., Folgado, J. V. \& Gómez Romero, P. (1994). Inorg. Chim. Acta, 216, 185-190.
Seco, J. M., González Garmendia, M. J., Pinilla, E. \& Torres, M. R. (2002). Polyhedron, 21, 457-464.
Sharrok, P. \& Melnik, M. (1985). J. Coord. Chem. 14, 65-72.
Stoe \& Cie (2006). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.
Suen, M. Ch., Chan, Z. K., Chen, J. D., Wang, J. Ch. \& Hung, Ch. H. (2006). Polyhedron, 25, 2325-2332.

